Exam I, MTH 418, Spring 2016

Ayman Badawi

QUESTION 1. (i) Let H be a connected graph of order n and of size $n-1$. Show (prove) that H is a tree. Solution: Since H is connected, we know that H has a spanning subgraph that is a tree, say T. Since the order of T is \mathbf{n}, we know that the size of T is $\mathbf{n}-1$. Thus $H=T$.
(ii) Let H be a connected graph of order n . Show that H must have a spanning subgraph that is a connected bipartite. Solution: Since H is connected, we know that H has a spanning subgraph that is a tree, say T. Since every tree is connected d and bipartite graph, we are done.
(iii) Let H be a connected graph of order n and of size n . Assume that H has no bridges. Show that $H=C_{n}$ and hence every vertex of H is of degree 2. Solution: Since H is connected, we know that H has a spanning subgraph that is a tree, say \mathbf{T}. Thus T is of order n and with size $n-1$. Since the size of H is n, there exists exactly one edge say e of H that is not an edge of T. Hence $H=T+e$. Note that adding exactly one edge to a tree will create one and only one cycle, say C_{k}, where e must be a part of C_{k}. We claim that $k=n$. Assume $k \neq n$. Then there is an edge in T that is not an edge in C_{k} (because $H=T+e$ and e is a part of C_{k}). Every edge in T is a bridge and thus H has a bridge, a contradiction. Thus $k=n$, and hence $H=C_{n}$.
(iv) Assume that H is a disconnected graph of order n with exactly two components (say, H_{1} and H_{2}) and with associated non-increasing sequence $d_{1} \geq d_{2} \geq d_{3} \geq \cdots \geq d_{n}$. Assume that H_{1} is of order $m \geq 2$ and H_{2} has has a cycle. Show that there is a connected graph D of order n (the same order as H) and with associated non-increasing sequence as H. Solution: Let e be an edge of a cycle in H_{2}. Hence we know by a result that e is not a bridge and thus $H_{2}-e$ is CONNECTED!!!, let f be an edge in H_{1}. Now apply the 2 -switch sequence on the edges e, f. Then we get a connected graph D. Since D is obtained from H by using a sequence of 2 -switches, we KNOW that H and D must have the same non-increasing sequence....
(v) Construct a graph of order 5 and with associated non-increasing sequence $2 \geq 1 \geq 1 \geq 1 \geq 1$? Can we construct a connected graph of order 5 and with associated non-increasing sequence $2 \geq 1 \geq 1 \geq 1 \geq 1$? Does that contradict question (iv)? explain Solution: trivial
(vi) Let D be a graph of order n and with associated non-increasing sequence $d_{1}=3 \geq 1 \geq 1 \geq \cdots \geq 1=d_{n}$. Show that n must be even. Solution: We know that number of vertices with odd degrees in any graph (see class notes) must be an even number. Since every vertex in D is either of degree 3 or 1 , we conclude that n is even by the result.
(vii) Let D be a graph of order 6 and with associated non-increasing sequence $d_{1}=5 \geq 3 \geq d_{3} \geq d_{4} \geq 1 \geq 1=d_{6}$. Find all possible values of d_{3} and d_{4}. Use the Algorithm we studied in the class (on whether a sequence of degrees is GRAPHICAL or not), we conclude that $d_{3}=d_{4}=3$ or $d_{3}=d_{4}=2$
(viii) Let H be a graph with vertex-set $=\left\{v_{1}, \ldots, v_{11}\right\}$ and D is a graph with vertex-set $=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right\}$, Let $F=H \times D$ (Graph Product). Hence $\left(v_{1}, w_{2}\right),\left(v_{3}, w_{4}\right) \in V(F)$. Assume $v_{1}-v_{2}-v_{3}$ is the shortest path (walk) in H from v_{1} to v_{3} and $w_{1}-w_{2}-w_{3}-w_{4}$ is the shortest path (walk) in D from w_{1} to w_{4} in D. Find the distance between $\left(v_{1}, w_{2}\right)$ and $\left(v_{3}, w_{4}\right)$. Construct a shortest path from $\left(v 1, w_{2}\right)$ to $\left(v_{3}, w_{4}\right)$. [NOTE: You do not need to construct $H \times D$] Solution: ALL of you got it right
(ix) We know that every tree is addressable (i.e., every tree is isomorphic to an induced subgraph of Q_{k} (k-cubes graph). Find the address of each vertex of the following tree of order 5. See CLASS NOTES on how to label each vertex, note that T here is isomorphic to INDUCED subgraph of Q_{4} and never isomorphic to induced subgraph of Q_{3}.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

